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Plant-based heterologous expression systems can be leveraged to produce

high-value therapeutics, industrially important proteins, metabolites, and

bioproducts. The production can be scaled up, free from pathogen

contamination, and offer post-translational modifications to synthesize

complex proteins. With advancements in molecular techniques, transgenics,

CRISPR/Cas9 system, plant cell, tissue, and organ culture, significant progress

has been made to increase the expression of recombinant proteins and

important metabolites in plants. Methods are also available to stabilize RNA

transcripts, optimize protein translation, engineer proteins for their stability,

and target proteins to subcellular locations best suited for their accumulation.

This mini-review focuses on recent advancements to enhance the production

of high-value metabolites and proteins necessary for therapeutic applications

using plants as bio-factories.

KEYWORDS

plant secondary metabolites, heterologous production, molecular farming, plant-
made secondary metabolites, plant-made therapeutic proteins
1 Introduction

Many plant-based expression systems were developed for the large-scale production

of valuable proteins and metabolites used in the pharmaceuticals, nutraceuticals, and

cosmetics industries. These platforms are relatively cost-efficient, free from pathogens

affecting humans, can synthesize complex proteins with post-translational modifications,

and are scalable (Buyel, 2019; Burnett and Burnett, 2020). They can be used to produce

vaccines, antibodies, antimicrobial peptides, hormones, growth factors, and industrially

essential enzymes. Plants can be also used to produce high-value secondary metabolites
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(SMs). The SMs are produced from primary metabolic pathways

and are induced in limited quantities during plant growth,

development, and abiotic/biotic interactions (Chen et al.,

2022). SMs have broad activities against viral, bacterial, and

fungal infections and are used to treat various diseases like

cancer, arthritis, diabetes, and neurological and respiratory

disorders (De Filippis, 2016). Since chemical synthesis is

expensive and challenging for many SMs, pharmaceutical

industries depend on medicinal plants for sourcing SMs (Isah,

2019). With advancements in molecular techniques and

synthetic biology tools, researchers have increased the quantity

and quality of plant-made recombinant proteins and SMs. This

mini-review summarizes different strategies for the enhanced

production of valuable proteins and metabolites using plants as

bio-factories for heterologous expression.
2 Heterologous expression of
recombinant proteins in plants

Plant molecular farming is the practice of using plant-based

platforms to produce high-value recombinant peptides and

proteins. These proteins can either be stably or transiently

produced, and as per need, they can be directed to accumulate

in whole plants, seeds, chloroplasts, fruits, or roots (Xu et al.,

2018). Moreover, many plant transformation methods based on

Agrobacterium or polyethylene glycol (PEG)-mediated

transformation, particle-bombardment, vacuum, and virus-

based infiltrations are well established (Joung et al., 2015).
2.1 Approaches to enhance expression of
recombinant proteins

2.1.1 Promotor engineering and
combinatorial stacking

The promoter is an essential element in regulating transgene

expression. As per the need, many different types of promoters,

like constitutive, inducible, tissue-specific, and synthetic

promoters, are employed. The cauliflower mosaic virus 35S

promoter (CaMV 35S), a strong constitutive promoter in

either single or multiple copies, is widely used in dicot plants,

whereas the maize ubiquitin-1 (Ubi-1) promoter is used to

express therapeutic proteins in monocots (Phakham et al.,

2021; Mirzaee et al., 2022). Recently, Damaj et al. (2020)

reported a combinatorial stacked promoter system to enhance

the expression of recombinant bovine lysozyme (BvLz). BvLz is a

potent broad-spectrum antimicrobial enzyme used in the food,

cosmetic, and agricultural industries. Combinatorial plant

transformation and co-expression of BvLz under the control of

various constitutive and culm-regulated promoters yielded high

levels of expression (up to 11.5% of total soluble protein) in
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sugarcane culms (Damaj et al., 2020). Similarly, Padilla et al.

(2020) successfully enhanced the expression of recombinant

Galanthus nivalis L. (snowdrop) agglutinin (GNA) in

sugarcane and energy cane. GNA possesses antiviral,

antifungal, and antitumor activities. Under a single

constitutive Ubi-1 promoter, GNA accumulated 0.04% and

0.3% of total soluble protein (TSP) in sugarcane culms and

leaves, respectively. Its expression was further increased to 1.8%

TSP and 2.3% TSP in sugarcane and energy cane lines,

respectively, by co-expressing recombinant GNA under

multiple promoters (pUbi-1 and culm-regulated promoters

from sugarcane dirigent5-1 and sugarcane bacilliform virus;

pUBD5:GNA) from different expression vectors. Moreover, the

expression of recombinant GNA in the triple promoter

transgenic lines (pUBD5:GNA) was further boosted to 2.7%

TSP by inducing promoter activity with salicylic acid (Padilla

et al., 2020). These studies demonstrate the great potential of the

inducible promoters and combinatorial promoter stacking

system to increase the accumulation of high-value therapeutic

proteins in plants.

2.1.2 Codon optimization
The native amino-acid codon degeneracy enables the

optimization of non-favorable codons within an open reading

frame of a protein. Some mRNAs possess cryptic splicing sites,

secondary structures, mRNA stability elements, and alternative

translation start sites that may negatively affect protein

translation and accumulation. The codon optimization process

uses synonymous codons without altering the protein amino

acid sequence to increase translational efficiency (Webster et al.,

2017). For instance, through codon optimization, the expression

of stem cell factor (SCF) for ex vivo RBC production increased

25- to 30-fold in tobacco Bright Yellow-2 (BY-2) cells (Wang

et al., 2021). In another study, a codon-optimized BvLz was

stably expressed in sugarcane culms (Damaj et al., 2020).

Further, codon optimization and other approaches enhanced

the expression of human interferon-gamma (IFNg) via bamboo

mosaic virus (BaMV) mediated transient expression in

Nicotiana benthamiana (Jiang et al., 2019).

2.1.3 Expression using plant virus vectors
Plant viruses infect many crops, ornamentals, and medicinal

plant species (Kulshreshtha et al., 2017; Sharma et al., 2019).

Many asymptomatic or inactivated viruses have been engineered

as chimeric expression vectors to transiently express therapeutic

proteins in different plant species. For instance, the tobacco

mosaic virus (TMV) was employed to express the receptor

binding domain (RBD) of the SARS-CoV-2 spike protein in

glycoengineered N. benthamiana. After purification of the

protein and vaccination, mice produced RBD-specific

antibodies that neutralized the SARS-CoV-2 virus infection in

Vero E6 cells (Maharjan et al., 2021). Likewise, the bean yellow
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dwarf virus (BeYDV) expressed SARS-CoV-2 RBD and basic

fibroblast growth factor (bFGF) in two microalgae species;

Chlamydomonas reinhardtii and Chlorella vulgaris (Malla

et al., 2021). Similarly, the cowpea mosaic virus (CPMV) and

the potato virus X (PVX) expressed vaccine candidates in the N.

benthamiana against the hepatitis E virus and the influenza

virus, respectively (Mardanova et al., 2017; Zahmanova et al.,

2021). These findings underscore the utility of plant viruses to

express a wide range of biologics to produce therapeutic

molecules rapidly during pandemics.

2.1.4 Suppression of RNA silencing
A potential limitation in any eukaryotic expression system is

the inherent host RNA silencing mechanism that may suppress

the expression of foreign genes. Fortunately, many plant virus-

encoded suppressor proteins can be co-expressed with the gene

of interest to suppress host silencing, increasing recombinant

protein expression by several folds (Gao et al., 2013). For

instance, the co-expression of tombusvirus P19 suppressor led

to a 40% increase in the expression of truncated human IFNg
accumulation in N. benthamiana using a BaMV-based vector

(Jiang et al., 2019). In another example, PVX and a P19

suppressor were used to express a fusion protein (lhmlt) of

melittin peptide and gonadotropin-releasing hormone receptor

(GnRHR) in N. benthamiana. The purified protein was

functional and inhibited the cancerous cells in the MTT assay

(Naseri et al., 2020). In a recent study, CRISPR/Cas9 was also

employed to knockout N. benthamiana dicer-like proteins 2 and

4 (NbDCL2 and NbDCL4). The knockout plants produced 6.96

folds higher expression of human fibroblast growth factor 1

(FGF1) than wild-type plants (Matsuo, 2022).

2.1.5 Optimization of downstream processing
To enable efficient purification of the recombinant proteins

from plant cells, often downstream extraction and processing

steps need to be optimized. In the extraction phase, tissue

homogenization releases impurities like host cell proteins,

enzymes, and phenolic compounds. The phenolic compounds

form covalent complexes with recombinant protein in the

presence of plant polyphenol oxidases (PPO) and could result

in aggregation and precipitation of recombinant protein which

ultimately reduces protein yield and quality. Furthermore, many

plant proteases can degrade target proteins. These factors can be

partially addressed by including broad-spectrum protease

inhibitors and antioxidants in the extraction steps (Buyel et al.,

2015). In addition, CRISPR/Cas9-based target editing of PPO

genes in the host cells can be employed to enhance in planta

expression of recombinant therapeutic proteins (González et al.,

2020). Another alternative is to target proteins via. signal

sequences to accumulate into specific subcellular compartments

such as apoplast, chloroplast, and endoplasmic reticulum (Habibi

et al., 2017). Recombinant proteins can subsequently be purified
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with affinity tags such as maltose-binding protein, glutathione S-

transferase (GST), thioredoxin, staphylococcal protein A, and

poly-histidine tag (Pina et al., 2021).
2.2 Approaches to optimizing post-
translational modifications

Glycosylation is a key post-translational modification

needed in many human therapeutic proteins. Glycosylation in

plants differs from humans and possesses additional a 1,3 fucose

and b 1,2 xylose modifications. This may affect the activity,

stability, and immunogenic responses of the therapeutic protein

(Grabowski et al., 2014). Therefore, transgenic plants and plant

cell cultures were developed to remove plant-specific glycan and

to introduce human glycosylation pathways to produce more

complex proteins like monoclonal antibodies (Castilho and

Steinkellner, 2012). For instance, antibodies (CAP256-VRC26)

against human immunodeficiency virus type 1 were expressed in

glycoengineered N. benthamiana. These antibodies showed

equivalent neutralizing activity to mammalian-produced

antibodies (Singh et al., 2020). Similarly, human-like

glycosylated granulocyte colony-stimulating factor (G-CSF)

was produced in N. benthamiana by co-expressing genes

needed for human-specific O-glycosylated G-CSF (Ramıŕez-

Alanis et al., 2018).
2.3 Examples of key plant-made
therapeutic proteins

Many essential therapeutic proteins, vaccines, and

monoclonal antibodies are produced in plant systems. A

handful of these biologics are commercialized or in clinical

trials (Table 1). The first plant-made drug approved for

human use by U.S. Food and Drug Administration (FDA) is

Elelyso (taliglucerase alfa). It was produced in genetically

modified carrot cells by Protalix Biotherapeutics to treat

heritable type I Gaucher’s disease (Fox, 2012). Another drug is

ZMapp, a cocktail of three monoclonal antibodies produced in

transgenic tobacco. Its administration completely cured Ebola

infection in Rhesush macaques (Qiu et al., 2014). The other

plant-made commercialized proteins include bovine trypsin

(expressed in corn and marketed by Sigma Aldrich), human

and animal growth factors (expressed in barley seeds and

marketed by ORF Genetics), and recombinant human serum

albumin (expressed in rice and marketed by ScienCell Research

Laboratories). Recently, a large-scale phase 3 clinal trial of N.

benthamiana produced a quadrivalent influenza vaccine that

demonstrated substantial protection against influenza viruses in

adults (Ward et al., 2020). These findings conclude that plant-

made platforms to produce biopharmaceuticals have broad
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potential but need more research and optimizations to meet

market demand.
3 Heterologous expression of
secondary metabolites in plants

SMs are produced from primary metabolic pathways in

response to growth, development, and biotic and abiotic

stresses. Several SMs have utility as therapeutics for human

diseases. Many plant expression platforms like cell/suspension

culture, callus culture, organ culture, hairy root culture, shoot

culture, and transgenics are established for the heterologous

production of SMs (Fazili et al., 2022). However, the

accumulation of SMs can be enhanced further by a better

understanding and optimization of metabolic pathways, the

rate-limiting step(s), and genetic regulations.
3.1 Approaches to enhance the
production of secondary metabolites

3.1.1 Overexpression of rate-limiting enzyme(s)
The metabolic pathways may have single or multiple rate-

limiting steps, and the overexpression of crucial rate-limiting

enzyme(s) may improve the production of the desired

metabolite. For instance, Atropa belladonna ornithine

decarboxylase (AbODC) is a rate-limiting enzyme in the

biosynthesis of tropane alkaloids. Tropane alkaloids have

several clinical uses such as treating Alzheimer’s disease,

postoperative nausea, and motion sickness. Overexpression of

AbODC significantly increased the accumulation of putrescine,

N-methylputrescine, hyoscyamine, and anisodamine in A.
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belladonna hairy roots and transgenic plants (Zhao et al.,

2020). Similarly, overexpression of hyoscyamine six

hydroxylase, a key enzyme in the scopolamine biosynthetic

pathway, increased the production of scopolamine alkaloid in

the hairy roots of Datura innoxia (Li et al., 2020). Camptothecin

i s an FDA-approved pharmaceut i ca l ly impor tant

monoterpenoid indole alkaloid having potent anticancer

properties. The expression of two key camptothecin

biosynthetic genes, OpG10H and OpSLS, greatly enhanced its

production (up to 3.5 mg/g) in transgenic Ophiorrhiza pumila

hairy roots (Shi et al., 2020).

3.1.2 Overexpression of transcription factors
Transcription factors are critical regulators of many

metabolic pathways, and their expression can enhance SMs

production. The overexpression of OpWRKY2 activated a

camptothecin pathway gene, OpTDC. It resulted in a three-

fold increase in camptothecin accumulation in Ophiorrhiza

pumila hairy roots (Hao et al., 2021). In another study,

astragalosides production was increased in Astragalus

membranaceus hairy roots by overexpressing Arabidopsis

transcription factor MYB12, Production of anthocyanin

pigment 1 (PAP1), and maize leaf color (Lc) transcription

factors (Li et al., 2022).

3.1.3 Overexpression of MicroRNAs
MicroRNAs (miRNAs) are small noncoding RNAs

important for gene regulation. They play crucial roles in

growth, development, and stress responses, as well as the

regulation of secondary metabolite pathways (Hossain et al.,

2022). Small RNA sequencing of three grape varieties with

different anthocyanin and flavonoid content identified that the

grape lines with high anthocyanin content abundantly express
TABLE 1 Examples of plant-made vaccines, antibodies, and enzymes at various human clinical stages.

Product Plant Development
stage

Purpose References

Bacillus anthracis vaccine N. benthamiana Phase 1 Protection from anthrax Paolino et al., 2022

Vibrio cholerae vaccine Rice Phase 1 Protection from cholera Yuki et al., 2022

COVID 19 vaccine N. benthamiana Phase 3 Protection from COVID19 Hager et al., 2022

TNF fusion protein (OPRX-106) Tobacco BY2 cells Phase 2a Treatment of ulcerative colitis Almon et al., 2021

Monoclonal antibodies against HIV and HSV N. benthamiana Phase 1 Protection from HIV-1, HSV-1, and HSV-2 Politch et al., 2021

Pegunigalsidase alfa (PEGylated, a-
galactosidase A)

ProCellEx system Phase 1/2 Treatment of Fabry disease Schiffmann et al.,
2019

ZMapp (a triple monoclonal antibody) N. benthamiana Phase 1 Treatment of Ebola virus disease Mulangu et al., 2019

Plasmodium falciparum vaccine N. benthamiana Phase 1 Protection from malaria Chichester et al.,
2018

Taliglucerase alfa Carrot cells Phase 3 Treatment of Gaucher disease Zimran et al., 2018

HIV-neutralizing antibody N. tabacum Phase 1 Protection from HIV Ma et al., 2015

B-cell follicular lymphoma vaccine N. benthamiana Phase 1 treatment of Non-Hodgkin's lymphoma Tusé et al., 2015

human acetylcholinesterase-R (PRX-105) N. tabacum cell
line

Phase 1 Treatment against Organophosphorous (OP)
poisoning

Atsmon et al., 2015
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two miRNAs, miR828 and miR858. These miRNAs target the

MYB114 transcription factor, which is a negative regulator of

anthocyanin biosynthesis. Hence, overexpression of these

miRNAs increased anthocyanin accumulation (Tirumalai

et al., 2019). In another study, overexpression of miR156

isolated from Medicago truncatula increased 8.3 folds in total

anthocyanins production in transgenic poplar plants compared

to wild-type plants (Wang et al., 2020).

3.1.4 Gene editing
CRISPR/Cas9 mediated targeted mutagenesis has been

developed to enhance the production of valuable metabolites
Frontiers in Plant Science 05
in several plant species. Atropa belladonna produces a small

amount of hyoscyamine and its structural analogs, anisodamine,

and scopolamine. Zeng et al. (2021) used CRISPR/Cas9 to

disrupt hyoscyamine 6b-hydroxylase (AbH6H). The transgenic

plants produced a significantly higher hyoscyamine content but

without anisodamine and scopolamine alkaloids (Zeng et al.,

2021). In another study, Karlson et al. (2022) used CRISPR/Cas9

to silence cinnamate-4-hydroxylase (C4H) for enhanced

flavonoid production into N. tabacum cell suspension. C4H-

silenced cells produced a significantly higher concentration of

cinnamic acid, chlorogenic acid, pinostrobin, and naringenin

than wild-type cells (Karlson et al., 2022).
TABLE 2 Enhancement of secondary metabolites by various molecular approaches.

Molecular
Approach

Gene/Transcription factor/miRNA Plant Culture
type

Secondary
metabolite

Fold
increase

Reference

Overexpression of key
enzyme(s)

D24-reductase Fenugreek Hairy roots Diosgenin 3 Nasiri et al., 2022

Columbamine O-methyltransferase N. tabacum Transgenic
plant

Total alkaloids 1.09- 1.83 Tu TQ et al., 2022

12-Oxophytodienoate reductase Echium
plantagineum

Hairy roots Acetylshikonin 2 Fu et al., 2022

Geranylgeranyl diphosphate synthase (CrGGPPS2) Catharanthus
roseus

Transgenic
plant

Vindoline 1.2- 2.5 Kumar et al., 2020

Catharanthine 1.3- 3.5

Vinblastine 1.25-1.5

Tobacco lipid transfer protein (NtLTP1) Orange mint Transgenic
plant

Monoterpenes ————— Hwang et al., 2020

AtDXS, AtHDR, AtGGPS, JcCAS N.
benthamiana

Transgenic
plant

Casbene ————— Forestier et al.,
2021

Triterpene synthase, farnesyl diphosphate synthase, 1-
deoxyxylulose 5-phosphate synthase

Arabidopsis
thaliana

Transgenic
plant

Squalene and
botryococcene

2 Kempinski and
Chappell, 2019

Overexpression of
transcription factors

PgMyb308 Punica
granatum

Hairy roots Shikimate 4.8 Dhakarey et al.,
2022

VviNAC17 Grape berry Cell
suspension
culture

Anthocyanin
and flavonoids

2.5 Badim et al., 2022

VaMyb40 Vitis
amurensis

Callus culture Stilbenes 3.4-4 Ananev et al.,
2022VaMyb60 5.9-13.9

BcERF3 Bupleurum
chinense

Hairy roots Saikosaponins ———— Han et al., 2022

SmMYB1 Salvia
miltiorrhiza

Hairy roots Total phenolic
content

———— Zhou et al., 2021

ZmLc Scutellaria
baicalensis

Hairy roots Baicalin 3.24 Park et al., 2021

Baicalein 3.42

Wogonin 3.46

AtPAP1 Baicalin 5.53

Baicalein 5.80

Wogonin 2.29

Overexpression of
miRNAs

miR156 Poplar Transgenic
plant

Anthocyanins 8.3 Wang et al., 2020

Gene editing VvbZIP36 Vitis vinifera Transgenic
plant

Anthocyanins —————— Tu M et al., 2022

GmF3H1, GmF3H2 and GmFNSII-1 Soybean Transgenic
plant

Isoflavone —————— Zhang et al., 2020
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3.1.5 Expression in genetically
engineered microalgae

Although not plants, microalgae which are also

photosynthetic organisms can be leveraged to produce a broad

range of secondary metabolites of pharmaceutical importance

(Sreenikethanam et al., 2022). The Cannabis sativa plant

naturally produces cannabinoids that treat nausea and

vomiting caused by cancer chemotherapy, neuropathic pain,

and spasticity. Furthermore, cannabinoids also possess

anticancer properties (Mangal et al., 2021). Genetically

engineered Microalgae were recently used for the heterologous

production of cannabinoids (Bolaños-Martıńez et al., 2022).

Microalgae system is advantageous as they have limited

growth needs such as CO2 and few organic compounds.
3.2 Examples of key plant-derived
secondary metabolites

Plant SMs are useful as treatments for several diseases,

including cancer, diabetes, COVID-19, arthritis, and

neurological and cardiovascular disorders (De Filippis, 2016).

To date, only paclitaxel has been produced on a commercial

scale. It is included in the WHO list of essential medicines and is

used to treat different cancers. Phyton Biotech is commercially

producing paclitaxel (trade name Taxol® by Bristol-Myers

Squibb) using plant cell fermentation technology based on cell

lines of Taxus chinensis v. marei (https://phytonbiotech.com/).

The other SMs produced in different expression systems showed

higher expression than native plants (Table 2), but more efforts

are still needed to produce SMs at an industrial scale.
4 Conclusion

Despite the advantages of plant-based expression platforms,

only a few commercial products passed the regulatory approvals

and reached the market (Schillberg et al., 2019). In our

perspective, a critical barrier to commercialization using plant-

based expression platforms comes down to investment returns.

Any profitable company wants products of high quality,

reliability, and quantity at a low cost. Currently, the market

favors mammalian and bacterial platforms as they have a long

and successful history of making pharmaceuticals. Furthermore,

these platforms have demonstrated batch-to-batch consistency

and safety, which is especially important for drug formulations

for human use. Plant-based expression platforms face higher

capital costs for raw materials and infrastructure, downstream

process optimization costs, lower market demand, public

acceptance, more biosafety needs, and regulatory approvals.

Industries often are wary of switching from well-established
Frontiers in Plant Science 06
platforms to plant-based platforms. Plant-based expression

platforms need to demonstrate greater net economic return

compared to prokaryotic and mammalian systems to be

competitive. With recent advancements in genetic and

genomic tools, the heterologous production of high-value

proteins and metabolites in plant expression systems has

gained traction. The platforms can be deployed to mass-

produce (scalable) biopharmaceuticals in a shorter timeframe

and can be relatively cost-effective compared to other

conventional cell culture-based systems. This is particularly

helpful during rapid response situations such as during

pandemics. New approaches have also allowed for

improvements in target protein stability and accumulation,

post-translational modifications, and downstream recovery/

purification of the proteins. We anticipate increasing market

demand for high-value therapeutics and bioproducts that can

boost commercial interest in plant-based expression platforms.
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