Neuroinflammation

NH-

Microglia have been implicated in the pathology of neurodegenerative diseases. A growing body of evidence points to activated microglia as the source of numerous factors including TNF- α , IL-1 β , NO and ROS which can promote neuronal damage.¹ Many new compounds have been discovered which can attenuate microglial activation via different mechanisms. These may lead the way to the development of a new generation of therapeutic agents for neurodegenerative diseases. Some of these new agents are listed below.

Leonurine

Inhibits microglial over-activation and attenuates $A\beta(1-40)$ -induced cognitive impairments in rats via JNK and NF- κ B pathways.² Antiapoptotic activity.

Product No: 10-3193	10 mg/\$48.00	50 mg/\$180.00

Vinpocetine

Reduces inflammatory IL-2 β and TNF- α expression in rat hippocampus³, displays beneficial effects in a rat model of cerebral ischemia-reperfusion injury⁴ and exerts neuroprotective effects by suppressing microglial inflammation⁵.

Product No: 10-1126	20 mg/\$30.00	100 mg/\$65.00

Ibudilast

A pan-specific phosphodiesterase inhibitor, which displays protective effects on neuronal cell death induced by activated microglia.⁶

Product No: 10-2236	5 mg/\$40.00	25 mg/\$135.00_

Minocycline

Displays neuroprotective⁷ as well as anti-apoptotic and anti-inflammatory activities.

Product No: 10-2568	50 mg/\$42.00	250 mg/\$152.00

SB-225002

CXCR2 antagonist. Inhibits leukocyte recruitment to cerebral microvessels during neuroinflammation⁸ and blocks oxidative stress-induced cellular senescence⁹.

Product No: 10-2850	5 mg/\$60.00	25 mg/\$240.00_

FTY720 HCI (Fingolimod)

Displays immunosuppressive effects on microglia resulting in beneficial CNS effects.¹⁰

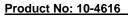
Product No: 10-2138	50 mg/\$45.00	250 mg/\$170.00

Auranofin

Reduces neuroinflammation by inhibiting microglia respiratory burst and $\text{TNF-}\alpha$ secretion.^11

Product No: 10-2373

50 mg/\$50.00


ISO-1

A macrophage migration inhibitory factor (MIF) antagonist. Reverses Aß-induced toxicity in various neuronal cell lines.¹²

Product No: 10-1185	<u>5 mg/\$60.00</u>	25 mg/\$220.00
Dreduct Net 40 440E		

FPS-ZM1

A high affinity RAGE antagonist. Attenuates AGE-induced neuroinflammation and oxidative stress in rat microglia.¹³ Attenuates blood brain barrier damage.

10 mg/\$55.00 50 mg/\$225.00

REFERENCES

- 1. Lull and Block (2010), Neurotherapeutics 7 354
- 2. Hong et al. (2014), Neuroinflammation 11 147
- 3. Gomez et al. (2014), J. Neurochem. **130** 770
- Wang *et al.* (2014), Neuro. Sci. Lett. **566** 247
 Zhao *et al.* (2011), Neuron Glia Biol. **7** 187
- Zhao *et al.* (2011), Neuron Glia Biol. **7** 187
 Mizuno *et al.* (2004), Neuropharmacology **46** 404
- 7. Tikka (2001), J. Neurosci. **21** 2580
- 8. Wu *et al.* (2015), Neuroinflammation **12** 98
- Shen et al. (2013), Int. Immunopharmacol. 16 261
- 10. Das *et al.* (2017), Neuropharmacology **119** 1
- 11. Madeira et al. (2014), J. Neuroimmunol. 276 71
- 12. Bacher et al. (2010) Mol. Med. 16 116
- 13. Shen et al. (2017) Neurochem. Res. 40 2902

400 Davis Dr. Suite 600 Plymouth Meeting, PA 19462 610-994-1134 sales@focusbiomolecules.com focusbiomolecules.com