

Cloud-Clone Cardiovascular Disease Related Products & Animal Models

Cloud-Clone Corp.

Reagents / Samples / Service

The cardiovascular system is composed of the heart and the vascular, which constitute the system for transporting blood. Cardiovascular activity can change cardiac output and peripheral resistance, coordinate blood flow distribution among organs and tissues under the mediation of nerve and body fluid, so as to meet the needs of blood flow in organs and tissues. The formation and development of heart and blood vessel, as well as the repair of injury and aging are regulated by many systems. Once these regulatory systems are confused, it will inevitably lead to metabolic disorders of heart and blood vessel cells, including the occurrence of cardiovascular diseases. According to current research, there are many cardiovascular-related signaling pathways, and the common pathways are roughly the following.

1.ENOS/NO signaling pathway: As a signal molecule, nitric oxide plays an important role in regulating blood pressure, maintaining vascular tension and regulating immune system in physiological activities. Abnormal NO is the cause of many cardiovascular diseases. Endothelial nitric oxide synthase, eNOS plays a major regulatory role as a rate-limiting enzyme in inducing NO synthesis.

2.Hippo-YAP signaling pathway: It plays a significant regulatory role in cell proliferation and apoptosis, and its core members include YAP and other proteins.

3.IL-33/ST2 signaling pathway: Soluble ST2 protein (sST2) is a member of the lL-1 receptor family, which can block the anti-cardiomyocyte hypertrophy and myocardial fibrosis effects of lL-33, leading to myocardial remodeling.

4.MTOR signaling pathway: mTOR kinase is a essential fator in regulating the homeostasis and growth of cardiomyocytes during development and postnatal period.

5.NOTCH signaling pathway: Notch signaling can be partly responsible for a variety of processes, such as angiogenesis, myogenesis, neurogenesis and hematopoiesis, and determine the growth, differentiation and survival of various cell types in different tissues.

2600+ Citations

181 Targets

Protein Antibody ELISA Kit

1. Excellent citations of Cardiovascular Biology related products(Excerpt)

Item	Species	Core No.	Journals	IF	Pubmed/DOI	Institute		
ANP	Mouse	A225	Nat Metab	41.2	36635449	Zhejiang University School of		
AINF	Mouse	Mouse A225 Nat Metab 41.2 30033449	Medicine					
cTnI	Mouse	A478	Not Motoh	41.2	26625440	Zhejiang University School of		
cini	Mouse	A4/8 INat Metab	Nat Metab	A4/8 Nat Metab 41.2 50053449	41.2 366	41.2 30035449	36635449	Medicine
NT-	Mouse	A485	Nat Metab	41.2	36635449	Zhejiang University School of		
ProBNP	Mouse	A483	Inat Mielab	at Metab 41.2 50055449	Medicine			
NT-	Porcine	1 1 9 5	EUROPEAN HEART	20.2	22080204	CARDIOR Pharmaceuticals GmbH,		
ProBNP	Porcine	A485	JOURNAL	39.3 33089304	Germany.			
						State Key Laboratory for Quality		
APOE	Human	A704	Nat Nanotechnol	38.3	37537273	Ensurance and Sustainable Use of		
						Dao-di Herbs		

GAPDH	Mouse	B340	Molecular Cancer	37.3	37161388	The First Affiliated Hospital of					
					0,10	5/10	2,12 2,101200	Zhengzhou University			
cTnI	Mouse	A478	Cell Metabolism	Cull Match allow	sm 29 34536344	Cell Metabolism 29 3453634	School of Basic Medical Science,				
CIIII	Wiouse	A470		23	54550544	Wuhan University					
. T I	Porcine	A 470	Call Matal allow	20	24526244	School of Basic Medical Science,					
cTnI	Porcine	A4/8	A478 Cell Metabolism 29 34536344	A478 Cell Metabolism 29 34536344	Cell Metabolism 29 54530544	Cell Metabolism 2		Wuhan University			
TNNT2	Porcine	D232	Cell Metabolism	20	24526244	School of Basic Medical Science,					
I NN I Z	Porcine	D232 Cell Metabolism	Porcine D232 Cell Metabolism 2	Cell Metabolism	Cell Metabolism 29 34536344	29 34536344	29 3453634	34536344	Wuhan University		
	Maria	A (0.5	Call Matal allow	polism 29 34107313	29	29	29	20		24107212	School of Basic Medical Science,
ADPN	DPN Mouse A605 Cell Metabolism 29 34107313	29	29					Wuhan University			

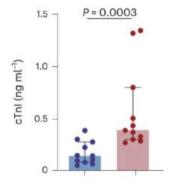


Figure . The concentrations of cTnl and LDH in the serum. (Kai Zhang, 2023)

(Product No.: SEA478Mu

Sample type: serum)

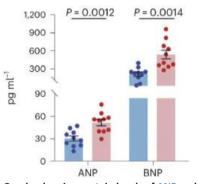


Figure . Graphs showing protein levels of ANP and BNP inthe serum of Trem2+/+Ch and Trem2-/-Ch chimeras 7 dafter CLP. (Kai Zhang, 2023)(Product No.: SEA225MuSample type: serum)



 Figure . The cells were lysed, and the protein expression

 was assayed by western blotting with GAPDH as the

 reference. (Yueqin Wang, 2023)

 (Product No.: CAB932Mi01
 Sample type: cell Lysate)

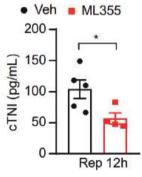


Figure . Plasma TNT and cTNI levels of pigs in ML355 and vehicle groups at 12 h after reperfusion. (Hongliang Li, 2023)

(Product No.: SEA478Po

Sample type: plasma)

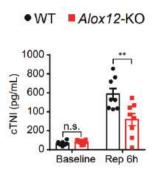


Figure . Content of troponin in serum of mice in WT and Alox12-KO groups at baseline and at 6 h after reperfusion. (Hongliang Li, 2023) (Product No.: SEA478Mu Sample type: serum)

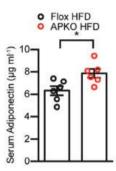


Figure . Serum-adiponectin levels after 12 weeks of HFD feeding. (Hongliang Li, 2021) (Product No.: SEA478Po Sample type: plasma)

2. Citation statistics of Cardiovascular Biology related products (Excerpt)

Matrix Metalloproteinase 9 (MMP9)

Product	Species	Citation
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Rabbit, Porcine, Bovine, Canine	128

Excerpt:

1. Li P, Sun Y, Liu Q. MicroRNA-340 induces apoptosis and inhibits metastasis of ovarian cancer cells by inactivation of NF-κB1[J]. Cellular Physiology and Biochemistry, 2016, 38(5): 1915-1927. (IF=5.5)

2. Bai Z, Wang J, Wang T, et al. The MiR-495/annexin A3/P53 axis inhibits the invasion and EMT of colorectal cancer cells[J]. Cellular Physiology and Biochemistry, 2017, 44(5): 1882-1895. (IF=5.5)

3. Corrado C, Saieva L, Raimondo S, et al. Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor[J]. Journal of cellular and molecular medicine, 2016, 20(10): 1829-1839.

4. Yoshizaki K, Brito J M, Silva L F, et al. The effects of particulate matter on inflammation of respiratory system: Differences between male and female[J]. Science of the Total Environment, 2017, 586: 284-295.

5. Moustafa P E, Abdelkader N F, El Awdan S A, et al. Liraglutide ameliorated peripheral neuropathy in diabetic rats: Involvement of oxidative stress, inflammation and extracellular matrix remodeling[J]. Journal of neurochemistry, 2018.

C Reactive Protein (CRP)

Species	Citation
Human, Rat, Mouse, Rabbit, Porcine, Bovine, Gallus	123
	Human, Rat, Mouse, Rabbit, Porcine, Bovine, Gallus

Excerpt:

1. Wolf D, Anto-Michel N, Blankenbach H, et al. A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense[J]. Nature communications, 2018, 9(1): 525. (IF=12.353)

2. Meng S. Resveratrol Inhibited Inflammation and Alveolar Bone Loss in Periodontitis[J]. Int J Dentistry Oral Sci. S, 2015, 6: 1-5. (IF=6.383)

3. Ye C, Wang R, Wang M, et al. Leptin alleviates intestinal mucosal barrier injury and inflammation in obese mice with acute pancreatitis[J]. International Journal of Obesity, 2018: 1. (IF=5.159)

4. Zhang L, Zhang T, Ding L, et al. The Protective Activities of Dietary Sea Cucumber Cerebrosides Against Atherosclerosis Through Regulating Inflammation and Cholesterol Metabolism in Male Mice[J]. Molecular nutrition & food research, 2018: 1800315. (IF=5.151)

5. Albert B B, De Bock M, Derraik J G B, et al. Among overweight middle-aged men, first-borns have lower insulin sensitivity than second-borns[J]. Scientific reports, 2014, 4: 3906. (IF=4.122)

Leptin (LEP)

Product	Species	Citation
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Rabbit, Porcine, Canine, Gallus, Horse	118

Excerpt:

1. Yoon Y S, Tsai W W, Van de Velde S, et al. cAMP-inducible coactivator CRTC3 attenuates brown adipose tissue thermogenesis[J]. Proceedings of the National Academy of Sciences, 2018, 115(23): E5289-E5297. (IF=9.504)

2. Stygar D, Chełmecka E, Sawczyn T, et al. Changes of Plasma FABP4, CRP, Leptin, and Chemerin Levels in relation to Different Dietary Patterns and Duodenal-Jejunal Omega Switch Surgery in Sprague–Dawley Rats[J]. Oxidative medicine and cellular longevity, 2018, 2018. (IF=4.936)

3. Wu L, Bai Y, Liu M, et al. Transport mechanisms of butyrate modified nanoparticles: insight into "easy entry, hard transcytosis" of active targeting system in oral administration[J]. Molecular pharmaceutics, 2018, 15(9): 4273-4283. (IF=4.556)

4. Wang Q, Du J, Yu P, et al. Hepatic steatosis depresses alpha-1-antitrypsin levels in human and rat acute pancreatitis[J]. Scientific reports, 2015, 5: 17833. (IF=4.122)

5. Konieczna J, Sánchez J, Palou M, et al. Blood cell transcriptomic-based early biomarkers of adverse programming effects of gestational calorie restriction and their reversibility by leptin supplementation[J]. Scientific reports, 2015, 5: 9088. (IF=4.122)

Myeloperoxidase (MPO)

Product	Species	Citation
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Rabbit, Porcine, Bovine, Gallus	105

Excerpt:

1. Chmielewski M, Hahn O, Rappl G, et al. T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice[J]. Gastroenterology, 2012, 143(4): 1095-1107. e2. (IF=20.773)

2. Wang L, Zhang W, Ge C H, et al. Toll-like receptor 5 signaling restrains T-cell/natural killer T-cell activation and protects against concanavalin A-induced hepatic injury[J]. Hepatology, 2017, 65(6): 2059-2073. (IF=14.079)

3. Zhong R, Xie H, Kong F, et al. Enzyme catalysis–electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip[J]. Lab on a Chip, 2016, 16(18): 3538-3547. (IF=5.995)

4. Li M, Wang B, Sun X, et al. Upregulation of intestinal barrier function in mice with DSS-induced colitis by a defined bacterial consortium is associated with expansion of IL-17A producing gamma delta T cells[J]. Frontiers in immunology, 2017, 8: 824. (IF=5.511)

5. Wang B, Yang A, Zhao Z, et al. The Plasma Kallikrein–Kininogen Pathway is critical in the Pathogenesis of colitis in Mice[J]. Frontiers in Immunology, 2018, 9: 21. (IF=5.511)

Adiponectin (ADPN)

Product	Species	Citation
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Rabbit, Porcine, Bovine, Gallus	105

Excerpt:

1. Hou N, Liu Y, Han F, et al. Irisin improves perivascular adipose tissue dysfunction via regulation of the heme oxygenase-1/adiponectin axis in diet-induced obese mice[J]. Journal of molecular and cellular cardiology, 2016, 99: 188-196. (IF=5.296)

2. Wolf D, Bukosza N, Engel D, et al. Inflammation, but not recruitment, of adipose tissue macrophages requires signalling through Mac-1 (CD11b/CD18) in diet-induced obesity (DIO)[J]. Thromb Haemost, 2017, 117(2): 325-38. (IF=4.952)

3. Chi Y, Li J, Li N, et al. FAM3A enhances adipogenesis of 3T3-L1 preadipocytes via activation of ATP-P2 receptor-Akt signaling pathway[J]. Oncotarget, 2017, 8(28): 45862.

4. Han F, Guo Y, Xu L, et al. Induction of haemeoxygenase-1 directly improves endothelial function in isolated aortas from obese rats through the Ampk-Pi3k/Akt-Enos pathway[J]. Cellular Physiology and Biochemistry, 2015, 36(4) 1480 1490

Angiotensin II (Angll)

Product	Species	Citation
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Rabbit, Porcine, Bovine, Gallus	86
Evenemet		

Excerpt:

1. Westermann D, Becher P M, Lindner D, et al. Biglcan is beneficial in angiotensin II induced heart failure by preventing cardiac inflammation and remodeling improving LV function and mortality by preventing transdifferentiation of myofibroblasts[J]. European Heart Journal, 2013, $34(suppl_1)$. (IF=23.425)

2. Camacho Londoño J E, Tian Q, Hammer K, et al. A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling[J]. European heart journal, 2015, 36(33): 2257-2266. (IF=23.425)

3. Jiang L, Zhu R, Bu Q, et al. Brain Renin–Angiotensin System Blockade Attenuates Methamphetamine-Induced Hyperlocomotion and Neurotoxicity[J]. Neurotherapeutics, 2018: 1-11. (IF=5.719)

4. Motawi T K, Darwish H A, Hamed M A, et al. A therapeutic insight of niacin and coenzyme q10 against diabetic encephalopathy in rats[J]. Molecular neurobiology, 2017, 54(3): 1601-1611. (IF=5.076)

N-Terminal Pro-Brain Natriuretic Peptide (NT-ProBNP)

Product	Species	Citation
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Rabbit, Porcine, Bovine, Gallus	68

Excerpt:

1. Clavel M A, Côté N, Mathieu P, et al. Paradoxical low-flow, low-gradient aortic stenosis despite preserved left ventricular ejection fraction: new insights from weights of operatively excised aortic valves[J]. European heart journal, 2014, 35(38): 2655-2662. (IF=23.425)

2. Belle V S, KRISHNANANDA PRABHU R V, Shetty R K, et al. N-Terminal-pro Brain Natriuretic Peptide in Assessing the Severity of Stable Coronary Artery Disease[J]. Journal of Clinical & Diagnostic Research, 2018, 12(8). (IF=6.217)

3. Bielecka-Dabrowa A, Sakowicz A, Misztal M, et al. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies[J]. International journal of cardiology, 2016, 221: 1073-1080.

4. Lin Y H, Kuo C C, Lee C M, et al. 5-methoxytryptophan is a potential marker for post-myocardial infarction heart failure-a preliminary approach to clinical utility[J]. International journal of cardiology, 2016, 222: 895-900.

Oxidized Low Density Lipoprotein (OxLDL)

Product	Species	Citation
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Porcine	68

Excerpt:

1. Niopek K, Üstünel B E, Seitz S, et al. A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage[J]. Cell reports, 2017, 20(6): 1422-1434. (IF=8.032)

2. Douglas G, Bendall J K, Crabtree M J, et al. Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE-/- mice[J]. Cardiovascular research, 2012, 94(1): 20-29. (IF=6.29)

3. Goo Y H, Son S H, Yechoor V K, et al. Transcriptional Profiling of Foam Cells Reveals Induction of Guanylate-Binding Proteins Following Western Diet Acceleration of Atherosclerosis in the Absence of Global Changes in Inflammation[J]. Journal of the American Heart Association, 2016, 5(4): e002663.

Nitric Oxide Synthase 2, Inducible (NOS2)

Product	Species	Citation	
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Rabbit, Porcine, Bovine, Gallus	66	
Excerpt:			

1. Diling C, Chaoqun Z, Jian Y, et al. immunomodulatory activities of a Fungal Protein extracted from Hericium erinaceus through regulating the gut Microbiota[J]. Frontiers in immunology, 2017, 8: 666. (IF=5.511)

2. Campo G M, Avenoso A, D'ascola A, et al. Adenosine A2A receptor activation and hyaluronan fragment inhibition reduce inflammation in mouse articular chondrocytes stimulated with interleukin-1 β [J]. The FEBS journal, 2012, 279(12): 2120-2133.

3. Filip G A, Postescu I D, Bolfa P, et al. Inhibition of UVB-induced skin phototoxicity by a grape seed extract as modulator of nitrosative stress, ERK/NF-kB signaling pathway and apoptosis, in SKH-1 mice[J]. Food and chemical toxicology, 2013, 57: 296-306.

4. Shahmohammadi A, Rousta A M, Azadi M R, et al. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects[J]. Cytokine, 2018, 104: 151-159.

Brain Natriuretic Peptide (BNP)

Product	Species	Citation
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Porcine	54

Excerpt:

1. Lu D, Wang K, Wang S, et al. Beneficial effects of renal denervation on cardiac angiogenesis in rats with prolonged pressure overload[J]. Acta Physiologica, 2017, 220(1): 47-57. (IF=5.93)

2. Wei J, Guo F, Zhang M, et al. Signature-oriented investigation of the efficacy of multicomponent drugs against heart failure[J]. The FASEB Journal, 2018: fj. 201800673RR. (IF=5.595)

3. Li L, Ni J, Li M, et al. Ginsenoside Rg3 micelles mitigate doxorubicin-induced cardiotoxicity and enhance its anticancer efficacy[J]. Drug delivery, 2017, 24(1): 1617-1630.

4. Kovacevic L, Wolfe-Christensen C, Lu H, et al. Why does adenotonsillectomy not correct enuresis in all children with sleep disordered breathing?[J]. The Journal of urology, 2014, 191(5): 1592-1596.

Heme Oxygenase 1 (HO1)

Product	Species	Citation	
Protein / Antibody / ELISA kit	Human, Rat, Mouse, Porcine	36	

Excerpt:

1. Olkowicz M, Jablonska P, Rogowski J, et al. Simultaneous accurate quantification of HO-1, CD39, and CD73 in human calcified aortic valves using multiple enzyme digestion–filter aided sample pretreatment (MED-FASP) method and targeted proteomics[J]. Talanta, 2018, 182: 492-499.

2. Bae E H, Konvalinka A, Fang F, et al. Characterization of the intrarenal renin-angiotensin system in experimental alport syndrome[J]. The American Journal of Pathology, 2015, 185(5): 1423-1435.

3. Kabel A M, Atef A, Estfanous R S. Ameliorative potential of sitagliptin and/or resveratrol on experimentally-induced clear cell renal cell

carcinoma[J]. Biomedicine & Pharmacotherapy, 2018, 97: 667-674.

3. Cloud-Clone Cardiovascular Biology related targets

Cloud-Clone Cardiovascular Biology related targets											
Target	Core No.	Target	Core No.	Target	Core No.	Target	Core No.	Target	Core No.		
ACE	A004	APOM	C299	EDN2	F415	LOX1	B859	PRCP	B253		
ACE2	B886	ARPC2	J601	EGF	A560	Lpa	A842	PROC	A734		
ACTC1	B341	ARPC4	J599	EMILIN1	A415	MEF2A	C647	PTGDS	B640		
ADAM10	A766	BCOR	C327	ES	A542	MMP1	A097	PTGIS	A740		
ADMA	B301	BK	A874	ESM1	C463	MMP10	A098	REN	A889		
ADP	A605	BMP10	C106	FABP2	A559	MMP14	C056	RETN	A847		
ADRa1A	B298	BNP	A541	FABP3	B243	MMP23A	A211	S17aH	C016		
ADRP	B350	CACT	B657	FABP4	B693	MMP25	B927	SALa	B892		
AGE	B353	CALML3	F898	FATP5	B660	MMP3	A101	SALb	C026		
AGER	A645	CALML5	F897	FCN2	B907	MMP8	A103	SOD1	B960		
AGT	A797	CBFb	C361	FUM	B931	MMP9	A553	SOD2	B083		
AGTR1	B658	CBY1	C364	gABA	A900	МРО	A601	TAZ	E564		
aHSP	A412	CC16	A857	GAPDH	B932	MR	A464	TF	A524		
ALOX5	B355	CDHH	B902	GATA4	A374	MSE	B433	TFPI2	B940		
AngI	A811	ChAT	B929	GLP1	A804	MYH7B	P164	TIMP1	A552		
AngII	A005	СКВ	C030	GLUT4	C023	MYL1	B105	TIMP3	A129		
AngIII	C312	СКМ	A109	GP6	B904	MYL2	B102	TIMP4	A130		
ANGPT1	A008	CKMT1A	A263	HAND1	C519	MYLK	B106	ТМ	A529		
ANGPT2	A009	CLCF1	C389	HDL	B006	MYO	A480	TMOD1	G689		
ANGPT4	A668	CNP	A721	HIF1a	A798	MYOG	B109	TMOD3	G687		
ANGPTL2	B919	cPLA2	B624	HIF2a	D466	MYPN	G685	TNNC1	D227		
ANGPTL4	B019	CRH	A835	HO1	A584	NMU	B025	TNNC2	D228		
ANGPTL7	R176	CRIP1	C402	НОР	C532	NOS2	A837	TNNI1	D229		
ANP	A225	CRP	A821	HSD11b1	C268	NOS3	A868	TNNI2	D230		
APOA1	A519	CSE	B538	IDE	B897	NOSTRIN	A628	TNNI3	A478		
APOA2	A604	CT1	A810	IGF1R	B659	NPR3	D046	TNNT1	D231		
APOA4	B967	CX37	B466	IGFBP1	A052	NPY	A879	TNNT2	D232		
APOA5	B997	CX40	B465	IMA	A825	NT-ProANP	A484	TNNT3	D233		
APOB	C003	CX43	A277	ITLN1	A933	NT-ProBNP	A485	TWF1	M410		
APOB100	A603	D2D	A506	LCN1	B706	OB	C039	VASN	G905		
APOC2	B996	DA	A851	LDHA	B370	OxLDL	A527	VEGFB	A144		
APOC3	B890	DDAVP	B841	LDHB	B698	PDK4	A958	VF	A638		
APOC4	B828	DPP4	A884	LDLR	B008	РКСе	A439	VLDLR	B009		
APOD	B968	DRD1	B299	LEP	A084	PKN2	B987				
APOE	A704	DSP	C203	LEPR	A083	PLA1	B151				
APOF	B879	ECE1	A483	LIPC	A769	PLN	B884				
АРОН	A310	EDN1	A482	LIPD	A386	PPARg	A886				

4. Cloud-Clone Cardiovascular Disease Related Animal Models

Rat Model for Myocardial Infarction (MI) • DSI504Ra02

1. Anesthesia with 3% pentobarbital sodium at 30mg/kg by intraperitoneal injection, shave the chest and armpit hair with a shaving razor, expose the operation area and disinfect with iodine and 75% ethanol.

2. After anesthesia, the toe of the test can be performed without reaction. Open the external light microscope, open the ventilator, setting the parameters (respiratory ratio 2:1, Tidal volume 6~8ml, respiration frequency 75bpm). Tracheal intubation was inserted into the trachea along the glottis, and the rats were connected to the ventilator. The respiratory status of the mice was observed, and the chest beat was consistent with the frequency of the ventilator. The results indicated that the MI could be performed successfully.

3. The rats were placed in the right lateral recumbency position. Ophthalmic scissors were used to cut three or four intercostal chests under the armpit of the left forelimb. The heart was fully exposed with micro scissors, and a small amount of pericardium was gently clipped to expose the left anterior descending coronary artery (LAD).

4. Find the LAD direction or possible location under the microscope. A 5-0 suture with needle was taken from the needle holder, and the suture was passed through the left anterior descending coronary artery (LAD) next to the pulmonary artery below the root of the left atrial appendage to block the blood flow of the LAD.

5. The thoracic opening was sutured, the thoracic cavity was closed, and each layer of muscle and skin was sutured from the inside to the outside.

6. Pay close attention to the state of the mice after operation, whether there is abnormal breathing. After the mice were naturally recovered, the rats were removed from the ventilator and the trachea was removed.

Modeling Result _

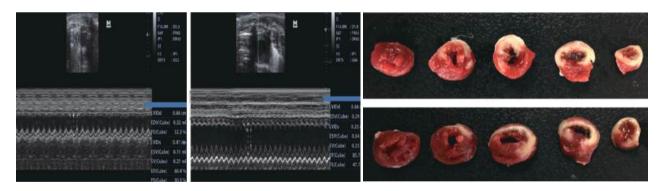


Fig. Ultrasonography images for rat heart of MI model (left); The TTC staining of rat heart of MI Model (right)

Mouse Model for Cardiac Hypertrophy (CH) • DSI548Mu03

1. Healthy male mice aged 6-8 weeks were selected as experimental subjects for SPF mice.

2. The weight of the mice was accurately weighed (g), and the mice were anesthetized by intraperitoneal injection. After the mice were fully anesthetized (about 3-5 minutes), the hair on the neck and chest of the mice was shaved with a mouse hair shaver (fully exposing the surgical area).

3. The mouse was inverted so that the mouse head was on the operator's side, and the head was raised. The middle of the neck was opened vertically to the beginning of the upper thoracic rib, and a 0.5mm incision was made down the midline of the rib at the beginning of the rib to expand the field of view, and the trachea from the neck was bluntly separated to the thymus. The aortic arch could be clearly seen by gently poking the free fat of the thymus. A 7-0 nonabsorbable suture was drawn from the base of the aortic arch, together with a homemade constriction tool (27G), to tighten the knot and withdraw the constriction tool. After completing the TAC operation, the mouse body temperature was maintained at around 37°C throughout the experiment.

4. The anterior opening of the chest cavity was sutured, and the skin incision was sutured completely with 5-0 sutures.

5. Pay close attention to the mouse status. After the mice woke up naturally, they were placed in a clean cage, filled in the operation record card, and returned to the rearing room to record the postoperative status and death of the mice.

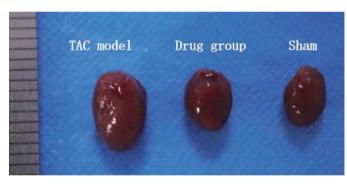


Fig. Picture of hearts

(For more informations, please visit:www.cloud-clone.com)

Cloud-Clone Corp.

Original Manufacturer for Reagents, Samples and Services

23603 W. Fernhurst Dr., Unit 2201, Katy, TX 77494, USA Tel: 001-832-538-0970 Toll free: 888-960-7402 (In the USA)

www.cloud-clone.com www.cloud-clone.us

Modeling Result _____