Higher molecular weight proteins and high acrylamide concentrations require longer transfer times. Transfer efficiency can be checked via stain in Ponceau S solution before preparing the membrane for detection of proteins.

Following transfer, the membrane is prepared for antibody staining by incubation with a blocking solution which prevents nonspecific binding. Typically 5\% nonfat dry milk or 3\% bovine serum albumin (BSA) are used for blocking and are in solution with a detergent. This is then followed by incubation of the membrane with primary antibody to target of interest. This facilitates the direct detection of the protein of interest. A secondary antibody targets the primary antibody's Fc region (species specific) and is linked to an enzyme that catalyzes a chromogenic, fluorescent, or chemluminescent signal. This provides the signal amplification to visualize very small quantities of protein. Secondary antibodies are conjugated to biotin or enzymes such as alkaline phosphatase (AP) or horseradish peroxidase (HRP). When the enzyme substrate is added, either a colored precipitate (colorimetric detection), or a chemiluminescent or fluorescent product is formed and the light signal is captured.

Table 1. Comparisons between Northern, Southern and Western Blots.

| Southern Blot | Northern Blot | Western Blot |  |
| :--- | :---: | :---: | :---: |
| Target for <br> Detection | DNA | RNA | Protein |
| Sample Prep | DNA extraction, enzymatic <br> digestion by restriction <br> enzymes | RNA isolation, denaturation <br> w. formaldehyde | Protein extraction, protein <br> denatured with SDS |
| Separation | Agarose Gel <br> Electrophoresis | Agarose Gel <br> Electrophoresis | SDS-PAGE |

